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Abstract— This paper presents and analyzes an architecture
that exploits the serendipitous movement of mobile agents in an
environment to collect sensor data in sparse sensor networks. The
mobile entities, called MULEs, pick up data from sensors when in
close range, buffer it, and drop off the data to wired access points
when in proximity. This leads to substantial power savings at the
sensors as they only have to transmit over a short range. Detailed
performance analysis is presented based on a simple model of
the system incorporating key system variables such as number
of MULEs, sensors and access points. The performance metrics
observed are the data success rate (the fraction of generated
data that reaches the access points) and the required buffer
capacities on the sensors and the MULEs. The modeling along
with simulation results can be used for further analysis and
provide certain guidelines for deployment of such systems.

I. INTRODUCTION

Advances in device technology, radio transceiver designs
and integrated circuits along with evolution of simplified,
power efficient network stacks have enabled the production
of small and inexpensive wireless sensor devices [1], [2], [3],
[4]. These small and inexpensive devices can be networked
together to enable a variety of new applications that include
environmental monitoring, seismic structural analysis, data
collection in warehouses, traffic analysis etc. Such networks
should collect data (typically infrequently) from the sensors
for long periods of time without requiring human intervention.
The sensors must be low in cost and work within a limited en-
ergy budget. Therefore, in order to achieve network longevity,
a primary concern in such networks is power management.

Depending upon the application, sensors may need to be
spread over a large geographical area resulting in a sparse
network. The sensor distribution can be homogeneous (uni-
form spread of sensors) or heterogeneous (islands of sensors
separated by large distances). Sensors at each city intersection
are an example of a homogeneous distribution while sensors
for habitat monitoring [5] are distributed heterogeneously.
Possible approaches to ensure connectivity in such sparse
networks include:

• Installation of multiple base stations to relay the data from
sensor nodes in their coverage area.

• Deploying enough low-power relay nodes to effectively
form a dense connected network [6].

The base station approach trades off high communication
power needed by the sensors (for fewer BSs) with the cost
of installing additional stations. On the other hand, deploying

nodes to form a dense, fully-connected ad-hoc network may
not be cost-effective either. The proposed architecture in this
paper seeks to retain the advantages of both approaches - i.e.
achieve cost-effective connectivity in sparse sensor networks
while reducing the power requirements at sensors.

The key to making this feasible is the ubiquitous existence
of mobile agents [7] in many of our target scenarios that we
term MULEs (Mobile Ubiquitous LAN Extensions) [8]. In
the case of traffic monitoring, this role is served by vehicles
(cars, buses) outfitted with transceivers; in a habitat monitoring
scenario, animals can perform this role. MULEs are assumed
to be capable of short-range wireless communication and can
exchange data from any nearby sensor or access point they
encounter as a result of their motion. Thus MULEs can pick
up and buffer data from the sensors when they are close,
transferring the data to an access point when it comes within
range.

The primary advantage of our approach is the large power
savings that occur at the sensors because communication
now takes place over a short-range. Promising new radio
technologies like Ultra-Wideband (UWB) [9] which operate at
extremely low-power with large burst data capacity are poten-
tially suited for sensor to MULE communication. The primary
disadvantage of this approach, however, is increased latency
because sensors have to wait for a MULE to approach before
the transfer can occur. Nevertheless for many data collection
applications (that require data for analysis purposes only on
the order of hours or even a day) such increased latency is
acceptable. The proposed three-tier MULE architecture is thus
suitable for such delay-tolerant scenarios where power budgets
at the sensor are the over-riding constraint.

The relative strengths and weaknesses of various approaches
for data collection in sparse sensor networks are qualitatively
summarized in Table I. In the base station approach there
are a few base stations (same as access points) that cover
the entire geographical area and each sensor communicates
directly with the nearest base station. In the ad hoc network
approach, enough relay nodes are present so as to form an
ad hoc network among sensors and relay nodes. The sensors
then send their data to the wired access points by multi-hop
routing over this ad hoc network. Note that while the MULE
approach suffers from higher latency, it has both low sensor
power consumption and low infrastructure cost; characteristics
that may be important for many applications.
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Performance Metrics
Approaches Latency Sensor Power Data Success Rate Infrastructure Cost

Base Stations Low High High High
Ad-hoc network Medium Medium-low Medium Medium-high
MULE High Low Medium Low

TABLE I

PERFORMANCE OF DIFFERENT APPROACHES FOR DATA COLLECTION IN SPARSE WIRELESS SENSOR NETWORKS.

Fig. 1. The MULEs three-tier architecture

The next section presents the MULEs architecture in more
detail. After that, the rest of the paper focuses on modeling
the system to obtain initial insights into the performance of
such an architecture. The goal of modeling was to understand
the scaling of the system characteristics as the parameters -
number of sensors, MULEs etc. change. The model chosen
was very simple, which enabled us to obtain closed form
analytical results for many quantities of interest, including
data success rate (the fraction of generated data that reaches
access points) and buffer occupancies at MULEs and sensors.
Although latency is an important performance metric, it is
not analyzed in this paper due to lack of space. In addition
to detailing the analysis, system simulation results are also
presented. These verify the analysis while providing some
more insight into system performance. The paper finally
concludes with the insights gained from the modeling analysis
and simulation results and outlines future research directions
based on this initial work.

II. THE MULE THREE-TIER ARCHITECTURE

The MULE architecture provides wide-area connectivity for
a sparse sensor network by exploiting mobile agents such
as people, animals, or vehicles moving in the environment.
The system architecture comprises of a three-tier layered

abstraction (Fig. 1) that can be adjusted to different types of
situations and distribution needs:

• A top tier of WAN connected devices,
• A middle tier of mobile transport agents and
• A bottom tier made of fixed wireless sensor nodes.

The top tier is composed of access points/central repos-
itories, which can be set up at convenient locations where
network connectivity and power are present. These devices
communicate with a central data warehouse that enables them
to synchronize the data that they collect, detect duplicates, as
well as return acknowledgments to the MULEs (acks may be
necessary to ensure reliability of data for certain applications).

The intermediate layer of mobile MULE nodes provides the
system with scalability and flexibility for a relatively low cost.
The key traits of a MULE are large storage capacities (relative
to sensors), renewable power, and the ability to communicate
with the sensors and networked access points. MULEs are
assumed to be serendipitous agents whose movements cannot
be predicted in advance. However as a result of their motion,
they collect and store data from the sensors, as well as deliver
acks back to the sensor nodes. In addition, MULEs can
communicate with each other to improve system performance.
For example a multi-hop MULE network can be formed to
reduce the latency between MULE and access point.

The bottom tier of the network consists of randomly dis-
tributed wireless sensors. Work performed by these sensor
nodes should be minimized as they have the most constrained
resources of any of the tiers.

Depending on the application and situation, a number of
tiers in our three-tier abstraction could be collapsed onto
one device. For example, to reduce latencies in the traffic
monitoring application, the MULEs can be equipped with an
always-on connection (such as a cellular or satellite phone)
which would allow it to act as the top and the middle tier.

Another key advantage of the MULE architecture is its
scalability and robustness as compared to centralized solutions.
No sensor depends on any single MULE, and hence failure
of any particular MULE does not disconnect the sensor from
the sparse network. It only degrades the performance. Also
the MULE architecture is easily scalable as deployment of
new sensors or MULEs requires no network configuration and
(most importantly) obviates the need for algorithmic scalabil-
ity for key functions such as routing of packets. The three-
tier architecture supports increased reliability as the redundant
access points and multiple MULEs create a fault-tolerant
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design wherein failures merely lead to graceful degradations
(reduced data success rate and increased latency).

Acknowledgments are an option in the MULE architecture;
as mentioned earlier, they may be essential to ensure reliability
for certain applications. We chose to use an end-to-end ac-
knowledgment system to ensure robustness to MULE failures.
Another possibility was to have tier-to-tier reliability where the
MULEs ack the sensor and the access points ack the MULEs
in turn. This was avoided, however, as it is possible that the
MULEs may fail at any time without delivering the data to
the access points and also because the MULEs may not be
trusted agents (data sent by the sensors may also be encrypted
for this reason). Furthermore, we chose to use a cumulative
acking scheme to keep the number of transmissions between
MULEs and sensors smaller as well as to reduce the overall
storage requirements on the MULEs.

In summary, the benefits of our system include:

• Far less infrastructure than a fixed base-station approach.
For applications with few sensors spread over a large area,
the cost savings could be orders of magnitude.

• There is no overhead associated with routing packets from
other sensors as compared to an ad hoc network approach.
For large ad hoc networks, this overhead can lead to a
substantial increase in energy consumption at a node.

• Given a sufficient density of MULEs, the system is more
robust than a traditional fixed network. Since sensors
only rely on MULEs, and MULEs are interchangeable,
the failure of any number of MULEs does not mean
connectivity failure; it merely increases the latency and
decreases the data success rate of the network.

• The endpoint applications in this transaction need not be
aware of the mobile portions of the network. Our network
API offers a packet-level reliable transport protocol. To
both the sender and receiver, it appears as if they are
talking over a reliable network with large and highly
variable latencies.

• System flexibility allows the same transport medium to be
used simultaneously by different applications. The MULE
system can be viewed as a mobile transport mechanism
for connecting heterogeneous nodes.

The drawbacks of our system are:

• Latency for this type of network is high and limits the
types of applications this solution would be applicable
for. Deterministic delay bound guarantees seem feasible
only if MULEs traverse fixed routes.

• The system presupposes a sufficient amount of physical
movement in the environment, which is a property of
many sensor systems.

• While no network is guaranteed to successfully deliver
data all the time, our serendipitous network can encounter
unexpected failures such as loss of a MULE or inability
to reach sensors because of change in terrain causing
limitations in mobility.
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Fig. 2. A two dimensional grid with the different system components

III. SYSTEM MODELING

We now focus on a simple and fully discrete (in time
and space) model of the network that nevertheless allows
us to investigate system performance as the parameters are
scaled. Figure 2 shows a pictorial representation of different
system components. We make the following assumptions in
our modeling:

• The underlying topology on which sensors, MULEs and
access points are placed is assumed to be a discrete
and finite two-dimensional grid. Further, for analytical
simplicity the planar topology is assumed to be the
surface of a torus (i.e the grid is wrapped in both the
north-south and the east-west direction).

• Only a fraction of the grid points are occupied by sensors
and access points. The access points are modeled to
be uniformly spaced on the grid while the sensors are
randomly distributed.

• The network evolves synchronously with a global clock.
At every clock tick the following events take place:

– Sensors generate one unit of data
– Every MULE moves on the grid

• The MULE motion is modeled as a simple symmetric
random walk on the grid. At every clock tick, a MULE
moves with equal probability to any of the four neighbors
of its current grid position.

• The MULEs communicate with the sensors or access-
points only when they are co-located at the grid points;
the communication is error-free and all the data is as-
sumed to be transferred during the contact period. Our
model therefore assumes sufficiently large link capacities.

• MULEs move independent of each other and do not
exchange any data among themselves when they intersect
(occupy the same grid point)

• Both sensors and MULEs have buffers to store data. For
the sensors, generated data is placed in its buffer if it has
space otherwise the new data is dropped. Similarly any
data transferred from sensors to MULEs is placed in the
MULE buffer only if space is available, else it is dropped.
Initially all buffers are empty.

• There are no end-to-end acknowledgments to ensure the
reliable delivery of data.
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Based on this model, we analyze the performance of the
system as the grid size, number of access points and the
number of MULEs are changed. The performance measures
that we focus on are:

• Data Success Rate: It measures the fraction of generated
data at the sensors that the system is able to transfer to the
access-points. In an ideal system all the data generated
by the sensors would be transferred to the access-points.
This would yield a data success rate of one.

• Buffer Sizing: As mentioned earlier both sensors and
MULEs have buffers. While small buffers could lead
to high packet drop rates, reducing the data success
rate, large buffers have an associated penalty in terms
of energy consumption, physical size and manufacturing
costs. Thus we would like to determine mimimum buffer
sizes that would ensure high data success rate while being
cost-effective.

The model presented above is very simple and excludes
many real-world aspects such as radio propagation, link failure
and bandwidth constraints. Another major concern is the
choice of mobility model for analysis. We realize that a
discrete random walk is not an accurate representation of the
motion of vehicles, people etc. However, the simplicity of
this model enables us to obtain closed-form results for the
quantities of interest, giving us insight into system scalability.
Also as mentioned in a recent survey [10], random walk is
a widely used mobility model which is useful in modeling
the unpredictable motion of entities. We hope to incorporate
more advanced and realistic models such as Smooth Random
Mobility Model [11] or Brownian motion with drift [12],
[13] in subsequent analysis. However note that with the
increasing complexity of mobility models the hope of closed
form analysis diminishes and one has to rely primarily on
simulation. Thus we believe that a first order analysis with
our simple model provides us with a useful base.

IV. GLOSSARY OF NOTATION AND SYMBOLS

This section lists all the commonly used symbols and
notation in this paper:
(Xn)n≥0 A discrete-time Markov chain
S State space of the Markov chain
pij The transition probability P{Xn+1 =

j|Xn = i}∀i, j ∈ S
π=(πi :i ∈ S) Stationary distribution for the Markov chain
|A| The cardinality of a set A
N The number of points on the grid, i.e. the

grid is
√

N on a side
Nmules The number of MULEs in the system
NAP The number of access points (AP) in the

system
Nsensors The number of sensors in the system
ρmules The ratio of the number of MULEs to the

grid size (Nmules/N ); (0 ≤ ρmules ≤ 1)
ρAP The ratio of the number of access points to

the grid size (NAP /N ); (0 ≤ ρAP ≤ 1)

ρsensors The ratio of the number of sensors to the
grid size (Nsensors/N ); (0 ≤ ρsensors ≤ 1)

MB The total buffer capacity on a MULE (in
number of packets)

SB The total buffer capacity on a sensor (in
number of packets)

AP Access point
Hi The hitting time to a sensor i in the grid,

i.e. the time taken by a MULE starting from
the stationary distribution to first hit i when
there is only one MULE in the system

Ri The inter-arrival time to a sensor i in
the grid, i.e. the time between consecutive
MULE arrivals to i when there is only one
MULE in the system

HNmules

i The hitting time to a sensor i in the grid
by any mule when there are Nmules in the
system

RNmules

i The inter-arrival time at a sensor i in the
grid by any mule when there are Nmules in
the system

RAP The time taken by a particular MULE to
start from the set of access points and return
back to it

Zi The buffer occupancy for a sensor i with
SB = ∞ when a MULE visits it

M (k) The buffer occupancy for MULE k on one
excursion from the set of access points back
to the set. If there is only one MULE, then
we’ll drop the superscript for convenience

S The data success rate of the system, which
is the fraction of generated data that reaches
the access points

V. BASIC RESULTS

The most elementary reference scenario consists of one
access point (NAP = 1) and one MULE (Nmules = 1) in
the system. We assume that the MULE and the sensors have
infinite buffer capacity. The AP is at some position (the exact
position is not critical) in the grid of size

√
N on a side. The

MULE is assumed to perform a simple symmetric random
walk on the grid. The state space S consists of the points on
the grid scanned in any order to form a vector of length N
(i.e., |S| = N ). This simple model allows us to apply the large
body of relevant results from discrete-time, finite state Markov
chains. We rely on the stationary distribution π = (πi : i ∈ S)
to estimate average values of the quantities of interest.

The transition probabilities for the Markov chain with state
space S are:

pij =

{
1/4 if (i,j) has an edge
0 otherwise

(1)

Since
∑

i∈S πi = 1 and all states are equiprobable (i.e πi =
πj ∀i, j ∈ S), we get,

πi =
1

N
(2)
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We next compute the following:

• Average inter-arrival time at a sensor node i, E[Ri]
• Average length that the MULE traverses before it returns

to the AP, E[RAP ]
• Average number of data samples the MULE picks up

during one traversal, E[M ]

The average time it takes for the MULE to return to the
same sensor node i is the inverse of the stationary probability
by Markov chain theory. Therefore,

E[Ri] =
1

πi

= N (3)

Since a unit data is generated every clock tick, this is also
the average value of the buffer occupancy at the sensor E[Zi]
when the MULE visits it (because SB = ∞, so the buffer
occupancy is the same as the amount data generated). Note
that this is the average value of the sensor buffer occupancy
observed only when the MULE visits the sensor, not over all
instants of time (the second quantity is not of much use in
analyzing the system and is also harder to characterize).

Similarly, the average number of steps the MULE takes
before returning to the access point is:

E[RAP ] =
1

πAP

= N (4)

The number of data samples the MULE picks up during
one traversal depends on three things - the length of the
traversal RAP , number of sensors encountered which depends
on ρsensors and the buffer occupancy at the sensors Zi. Since
the three quantities are independent, the average is simply
given by (since MB = ∞),

E[M ] = E[RAP ] · ρsensors · E[Zi]

= E[RAP ] · ρsensors · E[Ri]

= ρsensorsN
2 (5)

The above results provide useful preliminary insights into
the performance of the system as the grid is scaled. Clearly, the
time between MULE visits to a sensor grows linearly with the
grid size as shown in (3). This has two implications. Firstly, the
required buffer at the sensor needs to scale with the grid size
to prevent loss of data1. Secondly, the latency for data samples
also increases with the grid size. Both these problems can be
mitigated by having multiple MULEs in the system, a case
considered in section VII.

The second insight is that with only one access point in
the system, the length of MULE excursions from the AP to
the AP grows linearly as shown in (4). Similar to the case
above, there are two implications. The first is that the required
MULE buffer needs to be large to prevent loss of data. In fact,
the required buffer size grows as the square of the grid size
as shown by (5) above (Again we use E[M ] to get an idea
of the buffer sizes needed to avoid packet drops). The second

1Notice that while we assume SB = ∞, in reality the buffer capacity has
to be finite but sufficiently large to avoid packet drops. Thus we use E[Ri]
to provide an indication of sufficiently large.

Fig. 3. A two dimensional grid with the squares representing the positions
of the access points

A

B

Fig. 4. Folded version of the two dimensional grid to form a smaller grid
(The types of nodes and their transition probabilities are also shown)

implication is that the latency for the data when traveling from
the sensor to the access points grows linearly. This means that
the number of access points in the system needs to scale with
the grid size, a case considered in section VI.

VI. SCALING WITH NUMBER OF ACCESS POINTS

In this section, we analyze the effect of multiple access
points in the system. We assume that the access points are
spaced at a distance of

√
K points on the grid in both the x

and y directions. Therefore, K = N/NAP = 1/ρAP . We still
assume that only one MULE is present in the system.

Result 1: If the access points are regularly spaced at a
distance of

√
K points on the grid in both the x and the

y directions, then the expected length of excursion for the
MULE starting from the set of access points till it reaches the
set again (could be the same AP or another one),

E[RAP ] = K

=
1

ρAP

(6)

Proof: Looking at the symmetry of the grid in Fig. 3,
we can reduce the state space to a smaller grid of size

√
K ×√

K as shown in Fig. 4. This can be seen to be the result of
folding the entire grid onto the smaller box containing only one
access point A (which represents all the access points). This is
possible because from the perspective of a MULE, all access
points are equivalent. The resultant grid also remains a torus
(wraps around in the north-south and east-west directions).



www.manaraa.com

As in section V the stationary distribution for a node i in
this reduced grid (size

√
K ×

√
K) can be shown to be:

πi =
1

K
(7)

Using this stationary distribution, the return time to the point
"A" can be calculated. This is also the required excursion time
of the MULE from the AP set to the AP set since the point
"A" represents all the access points of the original grid.

E[RAP ] =
1

πA

= K

=
1

ρAP

Thus we see that the MULE excursion length between the
access point set is independent of the grid size as long as the
number of access points scale as a fraction of the grid size.

VII. SCALING WITH NUMBER OF MULES

In this section, we analyze the case when there are multiple
MULEs in the system. The fraction of MULEs in the system
is kept constant as the size of the grid is increased, i.e.,
Nmules/N = ρmules. We first calculate the average number
of visits observed at a sensor per unit time. We then calculate
the expected inter-arrival times for MULEs to a sensor. That
will extend the result (3) obtained in section V. As mentioned
before, we assume that all the MULEs are performing inde-
pendent random walks, with no communication among each
other. Also, note that every MULE starts in the stationary
distribution, and subsequently performs a random walk, thus
remaining in the stationary distribution.

Now consider a sensor and a particular MULE M0. Then
the probability that M0 intersects the sensor is given by,

P{M0 intersects sensor} =
1

N
(8)

Define:

Yk =







1 if one or more MULEs intersects
the sensor at time k

0 if no MULE intersects the
sensor at time k

(9)

Hence the probability that no MULE intersects with the sensor
is given by,

P{Yk = 0} =

(

1 − 1

N

)Nmules

⇒ P{Yk = 1} = 1 −
(

1 − 1

N

)Nmules

(10)

Therefore the expected number of MULE visits to a sensor

per unit time2 is,

lim
n→∞

1

n
E

[
n−1∑

k=0

1{Yk=1}

]

= lim
n→∞

1

n

n−1∑

k=0

P{Yk = 1}

= 1 −
(

1 − 1

N

)Nmules

≈ 1 − e−ρmules (large N) (11)

≈ ρmules (small ρmules) (12)

Result 2: The average inter-arrival time between MULE
visits to a sensor i when there are Nmules in the system is
given by,

E[RNmules

i ] =
1

1 − (1 − 1
N

)Nmules
(13)

≈ 1
1−e−ρmules

(large N) (14)

≈ 1
ρmules

(small ρmules) (15)
Proof: To find the average inter-arrival time at a sensor

i, we consider the Markov chain composed of the product of
the Markov chains of each of the MULEs. Thus the new state
space is given by,

S′ = S × S × . . . × S
︸ ︷︷ ︸

Nmulestimes

In the modified state space S ′, we are interested in the set of
states A which represent one or more MULEs intersecting i.
Since all the states are equally likely, the stationary distribution
for the set A can be calculated as,

π(A) =
|A|
|S′|

=
|S′| − |S′ − A|

|S′|

=
NNmules − (N − 1)Nmules

NNmules

= 1 − (1 − 1

N
)Nmules (16)

Thus, using Kac’s formula [14], the average inter-arrival time
between MULE visits to a sensor i is,

E[RNmules

i ] =
1

π(A)

=
1

1 − (1 − 1
N

)Nmules

Corollary 2.1: Average buffer occupancy on a sensor3 (with
sufficiently large buffer capacity) can now be calculated as:

E[Sensor Buffer] = E[RNmules

i ]

≈ 1

ρmules

(17)

2Multiple MULEs intersecting the sensor at the same time is considered to
be just one intersection.

3As mentioned earlier, this is just the average buffer occupancy seen at the
times of MULE arrivals at the sensor; not at all times. In other words, this
is the average amount of data that needs to be picked up by a MULE at the
sensor.
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Here we have used the observation that the sensor buffer
occupancy at the times of MULE visits is exactly the same
as the inter-arrival times between MULEs. Hence the average
values are also the same.

Corollary 2.2: Average buffer occupancy on a MULE4

(with sufficiently large buffer capacity) can also be calculated
as:

E[Mule Buffer] = ρsensorsE[RAP ]E[RNmules

i ]

≈ ρsensors

ρAP ρmules

(18)

Similar to the previous corollary, we use the expected value
of the inter-arrival times at a sensor as the expected value of
the sensor buffer occupancy when a MULE visits it.

It is interesting to note that the problem of increasing buffer
requirements at the sensor as the grid increases which we
encountered in section V is eliminated. As long as ρmules

remains constant, the buffer requirements remain the same. So
far we have just found the average value of the inter-arrival
times for MULEs to a sensor. We next need to obtain the
probability distribution. However, we first find the probability
distribution for the hitting time at a sensor as that is needed
for the result on the inter-arrival times.

A. Hitting time distribution at a sensor

For our purposes, the hitting time for a sensor i is defined
as the first time a MULE hits i when all the MULEs start
from the stationary distribution. We first find the probability
distribution of the hitting time for a system with a single
MULE before evaluating the general case of multiple MULEs.
[14] shows that the mean of the hitting time for a single
MULE is Θ(N log N) for simple symmetric random walk on
the surface of a torus. Furthermore, the distribution of hitting
times for an ergodic Markov chain can be approximated by
an exponential distribution of the same mean [14]. Therefore,

P{Hi > t} ≈ exp

( −t

cN log N

)

(19)

where the constant c ≈ 0.34 as N → ∞ (valid for N ≥ 25)
[15]. Note that this result uses the continuous time version of
the discrete time Markov chain, but the result is still correct
for the discrete time case [14]. However, writing in continuous
time simplifies the analysis considerably, thus all the hitting
and return time probability distribution results will be for the
continuous time chain. Using this we can now extend the result
for the case when there are Nmules(> 1) in the system.

Result 3: The hitting time for a sensor i when there are
Nmules in the system, all of which start in the stationary
distribution is given by:

P{HNmules

i > t} ≈ exp

(

−t

0.34 N
Nmules

log(N)

)

(20)

4Similar to the sensor buffer occupancy, this is the average buffer occupancy
on the MULE as seen at the times of MULE intersections with an AP; not
at all times. Thus this is the average amount of data that is picked up by the
MULE during one excursion between the AP set.

Proof: Let H
(k)
i denote the hitting time to sensor i for

a single MULE k. Then,

HNmules

i = min
k∈MULEs

H
(k)
i (21)

Thus, we obtain,

P{HNmules

i > t} = [P{Hi > t}]Nmules

≈
[

exp

( −t

0.34N log(N)

)]Nmules

= exp

(

−t

0.34 N
Nmules

log(N)

)

B. Inter-arrival time distribution at a sensor

To find the inter-arrival time distribution at a sensor i, we
first consider the case when there is only one MULE in the
system. In that case, the inter-arrival time at i is the same
as the return time Ri for the MULE. Unfortunately, there is
no closed form result for the distribution, but can only be
approximated as π/ log t for t → ∞ for an infinite grid [16].
For smaller times and for finite grid sizes, this only provides
a very loose upper bound on the tail probability.

To obtain a better characterization we derive a recursive
equation to compute P{Ri = t} (inter-arrival time distribution
for a single MULE). Let the initial position of the MULE be
at the grid position 0. Define Li,j(t) to be the number of paths
starting from i and ending at j of length t, avoiding the point 0
at all the intermediate steps. Also, let the neighbors of a node
k in the torus be denoted by the set N (k). Then, without loss
of generality, for any sensor node i,

P{Ri = t} = L0,0(t)/4t (22)

In the above equation, L0,0(t) denotes the total number of
valid paths that return to 0 in t steps and 4t denotes the total
number of possible paths of t steps. The following recursive
equation can now be used to compute L0,0(t):

Li,j(t) =
∑

k∈N (i)∧k 6=0 Lk,j(t − 1), t > 1

Li,j(1) =

{
1 if j ∈ N (i)
0 otherwise

Result 4: If the number of MULEs in a system is Nmules,
the inter-arrival time at a sensor i can be written as:

P{RNmules

i > t} ≈ P{HNmules−1
i > t} · P{Ri > t} (23)

Proof: To find the inter-arrival time distribution at a
sensor i, we consider the moment at which one MULE
intersects the sensor5. At this time instant, the rest of the
MULEs are in the stationary distribution. Thus,

RNmules

i = min (Ri, H
Nmules−1
i )

since the MULE at the sensor has to return to the sensor, but
for the (Nmules−1) remaining MULEs, it is identical to hitting
the sensors starting from stationarity. The result follows from
this observation.

5Here we are ignoring multiple mules at the sensor which is a very unlikely
event for low mule densities.
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C. Return time distribution to the access points set

We now compute the distribution of the excursion times
of a MULE between the access point set. As in section VI
we consider the folded torus (Fig. 4) in which all the access
points are represented as a single grid point. Since this point
represents the set of all access points, we need to compute the
return time distribution to this single grid point. For this we
can apply (22) to the folded torus to obtain the required return
time distribution. Thus,

P{RAP = t} = L0,0(t)/4t (24)

with L0,0(n) defined on the surface of the folded grid of Fig.
4.

VIII. DATA SUCCESS RATE

We now have the pieces in place to calculate the data
success rate. We define the data success rate as the ratio of
the average amount of data delivered to the access points by
time t to the total data generated by time t as t → ∞.

Result 5: The data success rate of the system is given by,

S =
∑

k∈MULEs

E
[

min(ρsensors

∑RAP

i=1 min(RNmules

i , SB), MB)
]

E[RAP ]Nsensors

(25)
Proof: We use renewal reward theory [17] to derive data

success rate. One excursion of the MULE from the access
point set back to the set is considered as a cycle. Therefore
RAP is the length of a cycle. Recall that the sensors generate
data at the constant rate of one packet per unit time therefore
the average data generated in system per unit time is Nsensors.
We now get the data success rate S as,

S =
E
[∑

k∈MULEs M (k)
]

E[RAP ]Nsensors

Here,

M (k) = Data picked up by the MULE k in time RAP

= min(ρsensors

RAP∑

i=1

Y
(k)
i , MB)

The min-function is because the buffer capacity of the MULE
bounds the total amount of data a MULE can carry. Now, Y

(k)
i

is the amount of data at a sensor visited by MULE k at time
i. This is given by,

Y
(k)
i = min(Zi, SB)

Similar to the previous step, the sensor buffer capacity bounds
the amount of data that can be present at a sensor, hence the
min-function. Also, since Zi is the amount of data generated
and not yet picked up at the sensor, it has the same distribution
as the inter-arrival time at a sensor.

Hence, putting this all together,

S =
∑

k∈MULEs

E
[

min(ρsensors

∑RAP

i=1 min(RNmules

i , SB), MB)
]

E[RAP ]Nsensors

Parameter Description

Grid size Number of points on the grid N

# of sensors = Nρsensors

# of MULEs = NρMULEs

# of access points = NρAP

Sensor buffer size Number of data samples each sensor can hold
MULE buffer size Number of data samples each MULE can hold
Random seed Used to initialize the random number generator

used by the simulator

TABLE II

INPUT PARAMETERS TO THE SIMULATOR

IX. SIMULATION SETUP

A custom event driven simulator was written to verify the
preceding analysis and also explore the conditions under which
it holds. In this section we present a brief description of the
simulator.

The simulator is a discrete event driven simulator where
time is measured in abstract units of clock-ticks. The under-
lying grid structure is the surface of a torus with the size
N specified during initialization. Depending on the values
of ρsensors and ρmules, appropriate number of sensors and
MULEs are placed randomly on the grid in the beginning.
Buffer sizes on both the sensors and the MULEs can also
be specified and are completely empty when the simulation
is started. Finally, the APs can be either randomly placed
on the grid or regularly spaced6, with the number of APs
depending on the value of ρAP . All the input parameters to
the simulator are shown in Table II. A summary of the various
events handled by the simulator is given in Table III.

The simulator also assumes a perfect radio channel, i.e.,
there is no loss of packets during transmission. The only way
packets can be lost is if the sensor or MULE buffers overflow.
However, the sensors do not maintain any state (such as acks
etc.) to implement reliability. Also there is no MULE to MULE
interaction, even though they may occupy the same grid point.

X. SIMULATION RESULTS

In this section, simulation results are presented which verify
all the major results of the analysis and also provide certain
insights. While the entire parameter space cannot be explored,
the simulations were performed for a range of reasonable
values for the various parameters.

To verify scaling with access points, E[RAP ] was measured
for a variety of grid sizes from 25 × 25 to 200 × 200. As
expected, E[RAP ] remained constant across all grid sizes (Fig.
5) when ρAP was kept constant, verifying (6).

Fig. 6 shows the effect of scaling the number of MULEs on
the average inter-arrival time to a sensor. As expected E[Ri]
remained constant for different grid sizes as long as the value
of ρmules did not change, in accordance with (15).

Fig. 7 plots the cumulative distribution function of the
hitting time HNmules

i for ρmules = 1%, 10% and 20% on a

6Interestingly, simulations showed similar results for both uniform and
random placement of access points.
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Event Parameters to
Event

Cause of occurrence Action

MULE motion MULE id Periodic (every clock tick) Changes the position of the MULE
Data Generation sensor id Periodic (every clock tick) Generates new data at the sensor

and stores it in buffer. If the sensor
buffer is full, data is dropped

MULE-Sensor
Interaction

MULE id,
sensor id

MULE and sensor at the
same grid position

Transfers all data from the sensor
to the MULE. If the MULE buffer
is full, all the extra data is dropped

MULE-Access
Point Interaction

MULE id, ac-
cess point id

MULE and access point at
the same grid position

Transfers all data from the MULE
to the access point

TABLE III

EVENTS DEFINED BY THE SIMULATOR
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Fig. 10. Data success rate vs. normalized MULE buffer size for ρmules =
0.1%, 1% and 10% (20 × 20 grid)

20 × 20 grid. The figure verifies that using the hitting time
result for the continuized chain is valid for the discrete time
case also. Similarly, Fig. 8 plots the cdf of RNmules

i for a
20 × 20 grid with the same values of ρmules. Finally, Fig. 9
plots the cdf of RAP for a mule on a 20 × 20 grid where
ρAP = 0.25%, 1% and 4%.

Figs. 10 and 11 plot the data success against the normalized
MULE and sensor buffers respectively.

Normalized MULE Buffer

=
Actual value of the MULE Buffer

E[MULE Buffer]
(26)

Normalized Sensor Buffer

=
Actual value of the Sensor Buffer

E[Sensor Buffer]
(27)

For Fig. 10, the sensor buffer size was infinitely large. Note the
steep drop-off of the data success rate with the MULE buffer
size. Also, more than 95% data success rate is achieved when
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Fig. 11. Data success rate vs. normalized sensor buffer size for ρmules =
0.1%, 1% and 10% (20 × 20 grid)

50% data 90% data
success rate success rate

ρmules MULE buffer MULE buffer

sensor 0.1% 43, 800 163, 000
buffer 1% 4280 14, 800
= ∞ 10% 480 1660

Sensor buffer Sensor buffer
MULE 0.1% 2030 7410
buffer 1% 152 630
= ∞ 10% 10 47

TABLE IV

SAMPLE VALUES OF MULE AND SENSOR BUFFER SIZES FOR 50% AND

90% DATA SUCCESS RATES

each MULE buffer is greater than 10E[M ]. Interestingly, the
plot also shows that one can trade-off the number of MULEs
in the system with the amount of buffer capacity on each
MULE. This is evident from the fact that the data success rate
curves are roughly the same for different MULE densities,
but reducing the number of MULEs by a factor k increases
the expected MULE buffer size by k (and vice versa). This
will obviously impact latency, as the sensors will have to wait
longer (or shorter as the case may be) before a MULE comes
by to pick up the data. However, the analysis of the latency
is left as future work.

Similarly, for Fig. 11 the MULE buffer size was infinitely
large. Again, a steep curve was obtained for the data success
rate. Also, the data success rate saturates for each MULE
density when the sensor buffer capacity reaches roughly
10E[RNmules

i ]. However, the figure shows that we cannot
trade-off a decrease in MULE density by increasing the
buffers at each sensor. Higher MULE densities lead to higher
data success rates, in general, until the sensor buffers are
sufficiently large.

This can be seen more clearly in Table IV which shows the
actual values of the buffer sizes needed to achieve data success
rates of 50% and 90%. These are shown for both the cases of
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infinite MULE and infinite sensor buffers. For SB = ∞, the
amount of MULE buffer needed to achieve a certain level of
data success rate scales inversely as the mule density. However,
when MB = ∞, the sensor buffer needs to increase (decrease)
by a ratio greater than the decrease (increase) in the number
of MULEs.

The reason for this can be understood by realizing what
causes a drop in the data success rate. For the finite sensor
buffer case, it is the sensor buffer getting full (thus, packets
get dropped) that reduces the success rate; in the finite MULE
buffer case, it is the MULE buffer overflowing that causes the
reduction in success rate. Now, as the number of MULEs in
the system decreases, the inter-arrival time at a sensor grows
larger, and consequently, there are larger amounts of data that
are dropped due to sensor buffer overflow. With increase in
Nmules, the probability of no MULE arriving at the sensor
for a long time reduces, hence the reduction in packet drops,
increasing the data success rate. However, for the other case of
infinite sensor buffer but finite MULE buffer, overflow of data
on the MULE does not happen that often due to the Law of
Large Numbers. Since the MULE picks up data from a large
number of sensors, the probability of the total amount of data
on the MULE exceeding the average value reduces. Thus the
data success rate is not affected by packet drops when the
number of MULEs change, as compared to the case when the
sensor buffer is finite.

XI. CONCLUSION

The MULE architecture provides an economical method to
connect sparse sensor networks at the cost of higher latencies.
The main idea is to utilize the motion of the entities that are
already present in an environment to provide a low power
transport medium for sensor data. The data from the power-
restricted sensors is carried by the MULEs and delivered to
the access points. After introducing the architecture, the focus
of the paper was on presenting a simple analytical model
to provide an insight into various performance metrics (data
success rate and buffer-sizes). The simple model enabled us
to obtain analytical expressions for these metrics, which were
then verified by simulations. Some of the key results from the
analysis and the simulations were:

• The sensor buffer requirements are inversely proportional
to ρmules.

• The MULE buffer requirement are inversely proportional
to both ρmules and ρAP .

• When the sensor buffer is large the buffer capacity on
each MULE can be traded-off with the number of MULEs
to maintain the same data success rate.

• The change in the buffer capacity on each sensor needs
to be greater than the change in the number of MULEs
to keep the same data success rate.

An important issue that is not addressed in this paper due to
lack of space is latency. Latency has two components - latency
on the sensor before a MULE picks up the data sample and the
latency on a MULE before it encounters an access point. We

are currently working on obtaining distributions and bounds
for both these quantities.

In addition, radio propagation and better mobility models
such as Brownian motion with drift, Gauss-Markov model etc.
need to be applied to get more realistic results. However, it is
to be expected that with more complicated models, analysis
will not be able to provide all the answers. From the protocol
point of view, MULE-to-MULE communication and reliability
using acknowledgments are other issues to be addressed in the
future.
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